CATE Meets ML - Conditional Average Treatment Effect and Machine Learning

نویسندگان

چکیده

For treatment effects - one of the core issues in modern econometric analysis prediction and estimation are two sides same coin. As it turns out, machine learning methods tool for generalized models. Combined with theory, they allow us to estimate not only average but a personalized effect conditional (CATE). In this tutorial, we give an overview novel methods, explain them detail, apply via Quantlets real data applications. We study that microcredit availability has on amount money borrowed if 401(k) pension plan eligibility impact net financial assets, as empirical examples. The presented toolbox contains meta-learners, like Doubly-Robust, R-, T- X-learner, specially designed CATE causal BART random forest. both, example, find positive all observations conflicting evidence heterogeneity. An additional simulation study, where true is known, allows compare different observe patterns similarities.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stratified Sampling Meets Machine Learning

This paper solves a specialized regression problem to obtain sampling probabilities for records in databases. The goal is to sample a small set of records over which evaluating aggregate queries can be done both efficiently and accurately. We provide a principled and provable solution for this problem; it is parameterless and requires no data insights. Unlike standard regression problems, the l...

متن کامل

Java-ML: A Machine Learning Library

Java-ML is a collection of machine learning and data mining algorithms, which aims to be a readily usable and easily extensible API for both software developers and research scientists. The interfaces for each type of algorithm are kept simple and algorithms strictly follow their respective interface. Comparing different classifiers or clustering algorithms is therefore straightforward, and imp...

متن کامل

Dlib-ml: A Machine Learning Toolkit

There are many excellent toolkits which provide support for developing machine learning software in Python, R, Matlab, and similar environments. Dlib-ml is an open source library, targeted at both engineers and research scientists, which aims to provide a similarly rich environment for developing machine learning software in the C++ language. Towards this end, dlib-ml contains an extensible lin...

متن کامل

ML Confidential: Machine Learning on Encrypted Data

We demonstrate that, by using a recently proposed leveled homomorphic encryption scheme, it is possible to delegate the execution of a machine learning algorithm to a computing service while retaining confidentiality of the training and test data. Since the computational complexity of the homomorphic encryption scheme depends primarily on the number of levels of multiplications to be carried ou...

متن کامل

ACL2(ml): Machine-Learning for ACL2

ACL2(ml) is an extension for the Emacs interface of ACL2. This tool uses machine-learning to help the ACL2 user during the proof-development. Namely, ACL2(ml) gives hints to the user in the form of families of similar theorems, and generates auxiliary lemmas automatically. In this paper, we present the two most recent extensions for ACL2(ml). First, ACL2(ml) can suggest now families of similar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2021

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.3816558